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encoded bit streams are not robust when trans-mitted without explicit error control codes [5].We use a discrete wavelet image that has beenquantized by an organized quantizer to present asimple method of recovering from bit errors intro-duced by a binary symmetric channel.We use �xed-length scalar quantization code-books that have been organized progressively. Asa result, errors in the most signi�cant bits of acodeword index result in large changes in the co-e�cient value, which are easily detected, while er-rors in the least signi�cant bits of a codeword in-dex result in only minor changes in the coe�cientvalue, rendering them less important to correct.Our motivations for using scalar quantization arethat (1) it has been widely studied and (2) it pro-vides a clear framework within which to study thee�ects of channel noise on codeword indexes.2 ApproachOur algorithm exploits the redundancy, or cor-relation, that remains in the low-frequency sub-bands. Because of that redundancy, a coe�cient'sneighbors can give some insight into the expectedrange of values for the central coe�cient. If a co-e�cient has a value that is outside of the expectedrange, it is possible that the codeword index hasbeen corrupted by bit errors. For low bit errorrates (less than 5%), it is also probable that anerroneous codeword index di�ers in only one bitfrom the correct one.Our correction algorithm has two components.The �rst component corrects bit errors in code-word indexes, while the second modi�es coe�-1
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Figure 1: The ten subbands in a 3-level DiscreteWavelet Transform. The lowest-frequency infor-mation is in the s3-s3 subband and the highest-frequency information is in the d1-d1 subband.cient values directly. The bit-correction compo-nent begins by examining the eight neighbors ofthe received codeword, as in Figure 2, and sort-ing them in ascending order of the coe�cients. Itthen discards the highest and lowest values on thesupposition that they might be erroneous, and de-termines if the central coe�cient falls within therange determined by the remaining values.If the central coe�cient falls outside of thatrange, it is deemed a probable error. When thatsituation occurs, the bit-correction componentcompares all codewords with a Hamming distanceof one from the erroneous codeword, and selectsthe one that would best �t within the previouslyestablished range. Note that this is similar to me-dian �ltering, but we examine a broad range ofreplacement values and only correct the bit thatwas the most likely to be corrupt.The second component applies essentially thesame approach as the �rst component; however,it corrects coe�cient values instead of codewordindexes. This component employs a non-linear �l-ter: if the central coe�cient is within the range of
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6 7 8Figure 2: The eight neighboring coe�cients of thecentral codeword.expected values after discarding the highest andlowest neighbors, then the central coe�cient isleft unchanged. Otherwise, it is replaced withthe value of the nearest remaining neighbor.Our correction method begins by applying thebit-correction component to the indexes of thes3-s3 subband from Figure 1. The indexes arethen converted to actual coe�cient values, andthe non-linear �lter is applied to the s3-s3 sub-band. From that point on, reconstruction of onelevel of the DWT alternates with an applicationof the non-linear �lter to the newly constructedsubband. For example, the corrected s3-s3 sub-band is combined with the raw s3-d3, d3-s3, andd3-d3 subbands, using an inverse DWT to gener-ate the raw s2-s2 subband. The non-linear �lteris then applied to the raw s2-s2 subband. Next,the corrected s2-s2 subband is combined with theraw s2-d2, d2-s2, and d2-d2 subbands to generatethe raw s1-s1 subband, which is then non-linear�ltered, and so on. This process is repeated un-til the entire reconstructed image is obtained and�ltered.3 ResultsTo determine the e�ectiveness of the combina-tion of codeword index replacement and recur-sive application of non-linear �ltering, we usedthe standard 8-bit 512 � 512 Lenna. We chosea 3-level DWT using the Daubechies 4-tap �lter,quantized each subband at 8 bits per coe�cient,and introduced errors into the bits at a rate of 1percent. Figure 3 shows the reconstructed imagewithout correction.2



Figure 3: A reconstruction of Lenna without anycorrection. The PSNR is 23.74 dB.An example of the progression of our algorithmas it corrects an image is presented in Figures 4, 5,and 6. The �nal reconstructed image is presentedin Figure 7. Compare it to the image in Figure 3when no correction is used.The peak signal-to-noise (PSNR) is 23.74 dBfor the received image in Figure 3 and 27.54 dBfor the corrected image in Figure 7. In this case,our correction method increased the PSNR by3.80 dB, with an obvious improvement in picturequality. We also tested some other �ltering meth-ods. A 3�3 median �lter on the uncorrected im-age resulted in a PSNR of 25.30 dB, while a 3�3averaging �lter yielded a PSNR of 25.13 dB.4 SummaryThe performance of our correction method isbased upon exploiting the correlation between awavelet coe�cient and its neighbors. In the ini-tial bit-correction step, our algorithm �nds thecodeword index that is the best match for thecodeword's neighborhood. In the subsequent co-e�cient �ltering steps, it uses a non-linear �lterthat moves outliers closer to the median. By al-ternating a reconstruction phase with a correction

phase, our method corrects errors at each scale ofthe image.5 Future WorkIn our future work, we will examine the situ-ation in which an image is transmitted across apacket loss channel. Although some preliminarywork in this area has been done [6], we thinkunequal error protection schemes look promis-ing. They have worked well with the transmis-sion of video sequences [7] and our preliminaryresults [8] indicate that they are also promisingfor the transmission of still images.References[1] R.-Y. Wang, E. A. Riskin, and R. Ladner, \Code-book organization to enhance maximum a poste-riori detection of progressive transmission of vec-tor quantized images over noisy channels," IEEETrans. on Image Proc., vol. 5, pp. 37{48, Jan.1996.[2] I. Daubechies, Ten Lectures on Wavelets. Philadel-phia, PA: Society for Industrial and Applied Math-ematics, 1992.[3] J. M. Shapiro, \Embedded image coding using ze-rotrees of wavelet coe�cients," IEEE Transactionson Signal Processing, vol. 41, pp. 3445{3462, Dec.1993.[4] A. Said and W. A. Pearlman, \A new, fast, ande�cient image codec based on set partitioning inhierarchical trees," IEEE Transactions on Circuitsand Systems for Video Technology, vol. 6, pp. 243{250, June 1996.[5] P. G. Sherwood and K. Zeger, \Progressive imagecoding for noisy channels," IEEE Signal Process-ing Letters, vol. 4, no. 7, pp. 189{191, 1997.[6] J. K. Rogers and P. C. Cosman, \Robust wave-let zerotree image compression with �xed-lengthpacketization," in Proc. of Data CompressionConference, pp. 418{427, Mar. 1998.[7] A. Albanese, J. Bl�omer, J. Edmonds, M. Luby,and M. Sudan, \Priority encoding transmission,"IEEE Trans. on Inform. Theory, vol. 42, pp. 1737{44, Nov. 1996.[8] A. E. Mohr, E. A. Riskin, and R. E. Ladner,\Transmitting still images across packet-erasurechannels." In preparation, 1998.
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Figure 4: The received s3-s3 subband of theLenna image magni�ed by a factor of 8 (top).The corrected s3-s3 subband (bottom). Figure 5: The raw s2-s2 subband of the Lennaimage magni�ed by a factor of 4. It is gener-ated from the corrected s3-s3 subband and theraw s3-d3, d3-s3, and d3-d3 subbands (top). Thecorrected s2-s2 subband (bottom).
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Figure 6: The raw s1-s1 subband of the Lennaimage magni�ed by a factor of 2. It is gener-ated from the corrected s2-s2 subband and theraw s1-d1, d1-s1, and d1-d1 subbands (top). Thecorrected s1-s1 subband (bottom). Figure 7: The raw entire Lenna image. It is gen-erated from the corrected s1-s1 subband and theraw s1-d1, d1-s1, and d1-d1 subbands (top). The�nal corrected image with a PSNR of 27.54 dB(bottom).
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